Schleiftechnik: Unterschied zwischen den Versionen

Aus Präzisionswerkzeugmechaniker-Wiki
Zur Navigation springen Zur Suche springen
Zeile 10: Zeile 10:
 
Sachgebiete:
 
Sachgebiete:
  
== Schleifscheibenaufbau ==
 
  
=== Schleifmittel ===
 
  
Arten von Schleifmitteln
 
  
;1. Elektrokorund (Aluminiumoxid)
 
  
Elektrokorund wird einem elektrochemischen Schmelzprozeß aus kalzinierter Tonerde bzw. aus
 
Bauxit gewonnen. Die Schmelze erstarrt zu Blöcken: welche anschließend in mehreren Schritten
 
zerkleinert und gemahlen werden. Die anschließende Klassierung auf Siebanlagen führt dann zu
 
den nach FEPA-Standard international genormten Schleifmittelkörnungen bzw. -korngrößen
 
  
;F- Federation - Vereinigung
 
;E- Europeene - europäischer
 
;P- Pabricants de Produits - Hersteller
 
;A- Abrastfs - Schleifscheiben
 
  
Der Gehalt an kiristallinem Alurniniumoxid (Al2O3) bestimmt wesentlich die Eigenschaften des
 
Elektrokorunds. Mit zunehmendem Al2O3-Gehalt nimmt die Härte und die Sprödigkeit des
 
Korundschleifkornes zu, die Zähigkeit dagegen entsprechend ab.
 
 
;Elektrokorund wird in drei Qualitätsgruppen hergestellt.
 
 
::Edelkorund mit ca. 99-99:9 % Al2O3 (Weiß)
 
::Halbedelkorund mit ca. 99-93 % Al2O3 (Rosa)
 
::Normalkorund mit ca. 95 % Al2O3 (Rubin)
 
 
[[Datei:Schleifmuster.jpg|600px]]
 
 
In jeder Gruppe gbt es wiederum zahlreiche verschiedene Sorten, welche sich durch die
 
chemischen Legierungsbestandteile, Beschichtungen oder mechanische oder thermische
 
Nachbehandlung unterscheiden. Dies hat unterschiedliche Auswirkungen auf das Schleifverhalten
 
so daß dadurch zur Lösung einer Schleifaufgabe eine vielfaltige Palette an Schleifmitteln zur
 
Verfügung steht.
 
 
Schleifmittel auf Korundbasis sind grundsätzlich durch das Kurzzeichen "A" gekennzeichnet, die
 
einzelnen Sorten werden durch das Voranstellen von Ziffern wie z.B. "81A" unterschieden. Diese
 
Vorzifiern sind immer firmenspezifisch und nicht übertragbar.
 
 
;2. Sinterkorund (SK)
 
 
Sinterkorund zeichnet sich durch sehr feine Microstrukturen, welche über das Sintern
 
sehr feiner, in einem elektrophoretischen Prozeß hergestellten Kristalle erreicht werden.
 
Durch diesen mikrokristallinen Aufbau verhält sich Sinterkorund bei richtigem Einsatz beim
 
Schleifen anders als herkömmlicher Korund, da sich in hohem Maße während des Schleifens
 
immer neue Schneidkanten bilden.
 
Sinterkorund wird ebenfalls mit dem Kurzzeichen "A" und 2 Vorziffern bezeichnet.
 
Er wird gundsatzlich mit anderen Schleifmittelsorten gemischt eingesetzt.
 
 
;3. Siliziumkarbid (SiC)  (grün- blau)
 
 
Siliziumkarbid wird ebenfalls in einem elektrochemischen Prozeß aus kohlenstofifreichem
 
Petrolkoks und Quarzsand (SiO2) hergestellt. Seine Aufarbeitung zu Schleifmittelkörnungen
 
entspricht etwa der des Elektrokorunds.
 
Silizirumkarbid ist härter als Korund, gleichzeitig aber auch wesentlich spröder.
 
 
Auch hier gibt es verschiedene Sorten. welche vor dem das Siliziumkarbid kennzeichnende
 
"C" mit einer Ziffer unterschieden werden wie z.B. " 1 C".
 
 
Anwendungen: harte Werkstoffe: HM, GG. HSS, Keramik, Glas; weiche Werkstoffe: Kupfer, Aluminium, Kunststoffe
 
 
;4. Kubisches Bornitrid (CBN) [[Datei:CBN Mono.jpg|150px|right]]
 
 
Kubisches Bornitrid ist ein künstlicher Schneidstoff, welcher in einem Hochtemperatur- und
 
Hochdruckprozeß aus Bor und Stickstoff hergestellt wird. CBN ist der zweithärteste praktisch
 
angewandte Schneidstoff und zeichnet sich durch hohe thermische und chemische Stabilität aus.
 
Coatings verbessern in Einzelfällen die Einbindung und Stabilität. Bezeichnet wird das CBN mit
 
dem Kurzzeichen "B" mit vorangestellten Zusatzziffern.
 
 
Anwendungen: HSS-Stahl, Warm- und Kaltarbeítsstähle
 
 
;5. Diamant (D) [[Datei:Diamat Korn.jpg|150px|right]]
 
 
Diamant ist der härteste Schleifstoffe. Er besteht rein aus Kohlenstoff in kristalliner Anordnung.
 
Für die Industrielle Anwendung wird überwiegend synthetischer Diamant verwendet, welcher aus
 
Graphit bei hohem Druck und Temperatur hergestellt wird.
 
Je nach Anwendungsfall stehen unterschiedliche Beschichtungen zur Verfügung. Bezeichnet wird
 
der Diamant mit dem Kurzzeichen mit vorangestellten Zusatzziffern.
 
Anwendung: Präzisionsschleifen von zähharten Werkstoffen wie HM, GG, Glas, Keramik; Abrichten von Schleifscheiben
 
 
;6. Schmirgel (SL) Al2O3 + SiO2 + Fe2O3
 
 
Belag von Schleifpapier
 
Bearbeiten incl. Polieren von Stahl. Gußeisen. Holz...
 
 
=== Körnung ===
 
 
;Korngrößen der Schleifmittel
 
 
Die Korngröße des Schleifmittels beeinflußt einerseits die Zerspanleistung des Schleifkörpers und andererseits die Oberflächenbeschaffenheit des geschliffenen Werkstückes.
 
Sie wird der geforderten Oberflächenrauhigkeit des Werkstückes entsprechend ausgewählt. Das Schleífkorn wird im Herstellungsprozeß durch Sieben klassiert. Dabei liegt ein internationaler Standard der Prüfsiebung zugrunde. Die Korngröße wird über eine Körnungsnummer identifiziert, wobei die Korngröße mit zunehmender Körnungsnummer abnimmt.
 
Die Körnungsnummer entspricht der Nummer desjenigen Siebgewebes, dessen Maschen das Schleífkorn beim Absieben noch passiert.
 
Die Siebgewebenummer entspricht dabei in etwa der Anzahl der Maschen welche dieses Siebgewebe auf einer Länge von 1 Zoll aufweist.
 
[[Datei:Zoll.jpg|600px]]
 
 
=== Härte ===
 
 
;Der Härtegrad des Schleifkörpers
 
 
Der Härtegrad - üblicherweise auch "Härte" oder "Buchstabenhärte" genannt - hat mit der
 
Härte des eingesetzten Schleifmittels zunächst nichts zu tun. Die "Härte" des
 
Schleifkörpers wird insbesondere von der anteilig enthaltenen Menge an Bindung, aber
 
auch von deren Art bestimmt. Sie nimmt mit zunehmendem Bindungsanteil zu. Dabei
 
werden die einzelnen Schleifmittelkörner immer fester zusammengehalten, in einem harten
 
Schleifkörper sind die Körner sehr fest verbunden und widerstehen daher sehr hohen
 
Schleifkräften.
 
 
Ein weicher Schleifkörper setzt dem Herausbrechen der abstumpfenden Schleifkörner
 
weniger Widerstand entgegen, so daß die Körner leicht aus dem Kornverbund
 
herausgelöst werden können.
 
Der Härtegrad wird durch einen Buchstaben gekennzeichnet, wobei er mit zunehmendem
 
Alphabet zunimmt.
 
 
Er kann ganz grob folgendermaßen eingestuft werden:
 
Neben dieser Buchstabenhärte gibt es noch die "Wirkhärte" des Schleifkörpers: Sie wird
 
zunächst von der Buchstabenhärte stark geprägt, beinhaltet aber das Gesamtverhalten eines
 
Schleifkörpers, welches sich aus dem Zusammenwirken aller Komponenten ergibt und
 
wesentlich vom "Gefüge" des Schleifkörpers abhängig ist.
 
Generell kann man einen Schleifkörper über Härte und Gefüge so einstellen. daß sich die
 
Schleifkörner bei beginnender Abstumpfung von selbst aus dem Schleifkörper lösen. Dann
 
spricht man von "Selbstschärfung", was aber gewisse Einschränkungen gegenüber der
 
erzielbaren Genauigkeit des Werkstückes mit sich bringt.
 
Ist ein Schleifkörper dagegen härter eingestellt, so lösen sich die Schleifkörner nicht mehr
 
selbst aus dem Verbund, sondern müssen durch einen gesonderten Prozeß, das
 
"Abrichten" oder " Konditionieren" des Schleifkörpers, neu geschärtt oder ganz aus der
 
Bindung herausgelöst werden. Dadurch erreicht man besondere Maß- und Profilhaltigkeit in
 
einem kontrollierten Schleifprozeß mit im allgemeinen sehr hohen Zerspanleistungen.
 
 
=== Bindung ===
 
 
Die Art der Bindung beeinflußt den Aufbau eines Schleifwerkzeuges sehr
 
wesentlich und führt zu sehr unterschiedlichem Schleifverhalten und dadurch zu
 
gründsätzlich unterschiedlichen Einsatzmöglichkeiten des verschieden gebundener
 
Schleifwerkzeug.
 
Daneben gibt es weitere Bindungsarten für spezielle Einsatzfälle wie z.B.
 
 
;Magnesitbindung (Mg)
 
 
::Eigenschaften: weich, elastisch, wasserempfindlich
 
::Anwendungen: Trockenschliff, Messerschliff
 
 
;Schellackbindung (E)
 
 
::Eigenschaften: temperaturempfindlich, zähelastisch, stoßunempfindlich
 
::Anwendungen: Sägen- und Formschliff, Regelscheiben beim spitzenlosen Schleifen
 
 
;Metallbindung (M)
 
 
::Eigenschaften: dicht oder porös, zäh, unempfindlich gegen Druck und Wärme
 
::Anwendungen: Profil- und Werkzeugschleifen mit Diamant oder Bornitrid, Naßschliff
 
 
;Keramische Bindung (V) gebrannt bei ca. 1000-1350°C
 
 
::Eigenschaften: porös, spröde, unempfindlich gegen Wasser, Öl, Wärme
 
::Anwendungen: Vor- und Feinschleifen von Stählen mit Korund und Siliziumkarbid
 
 
;Kunstharzbindung (BW) gebunden bei ca. 180°C
 
 
::Eigenschaften: dicht oder porös, elastisch, ölbeständig, kühler Schliff
 
::Anwendungen: Vor- oder Trennschleifen, Profilschleifen mit Diamant und Bornitrid, Hochdruckschleifen
 
 
;Kunstharzbindung faserstoffverstärkt (BWF)
 
 
[[Datei:Bindung.jpg|800px]]
 
 
=== Gefüge ===
 
 
;Das Gefüge des Schleifkörpers (auch "Struktur" genannt)
 
 
Das Gefüge oder die Struktur des Schleifkörpers beschreibt zunächst den im Schleifkörper
 
vorhandenen Porenanteil. Er ergibt zusammen mit dem Volumenanteil des Schleifmittels und der
 
Bindung immer 100% in diesem Dreistoffgemisch. Das Gefüge beschreibt aber auch die Größe,
 
Form und Anordnung der Bindungsstege im Schleifkörper und damit auch in besonderem Maße
 
das Schleifverhalten des Schleifwerkzeuges.
 
 
Das Gefüge eines Schleifkörpers muß daher im Zusammenspiel mit den anderen Komponenten
 
und Parametern der zu lösenden Schleifaufgabe individuell angepaßt werden, um höchste
 
Wirtschaftlichkeit zu erzielen:
 
 
:  - dichtes Gefüge und größere Härte ergeben hochbelastbare Form
 
:  - beständige Schleifkörper wie z.B. beim Außen- oder Innenrundschleifen benötigt.
 
:  - offenes Gefüge mit geringerer Härte ergibt zerspanungsfreudige Schleifkörper mit viel Raum für die Spanbildung und den Kühlmitteltransport.
 
 
[[Datei:Schleifscheiben-n.jpg|600px]]
 
 
Sie werden insbesondere benötigt bei Schleifverfahren mit großen Kontaktlängen zwischen
 
Werkstück und Schleifkörper wie z.B. beim Tiefschleifen (Flachprofilschleifen).
 
Das Gefüge bzw. die Struktur wird bei elbe mit Ziffern zwischen 2 bis 22 angegeben. Mit
 
zunehmender Zfferngröße steigt die Offenheit bzw. die Porosität des Schleifkörpers.
 
Die Vielzahl der Gefügeausbildungsmöglichkeiten macht es dabei erforderlich, daß die
 
Gefügekennzahl durch zusätzliche Buchstaben und Ziffern ergänzt werden kann.
 
 
== Auswuchten ==
 
 
Durch eine ungleiche Korn- und Bindenmittelverteilung entstehen durch die
 
Schleifscheibenunwucht Fliehkräfte.
 
Zum statischen Auswuchten wird die Schleifscheibe auf eine Auswuchtwaage oder einen
 
Abrollbock gelegt (Bild).
 
 
[[Datei:Auswuchten-Bild.jpg|600px]]
 
 
Die Ausgleichgewichte werden in der Ringnut verschoben, bis die Schleifscheibe in
 
jeder Lage in Ruhe bleibt.
 
 
;Bei Schleiffscheiben besonders bei hohen Umfangsgeschwindigkeiten ist das Auswuchten äußerst wichtig, auch bei Schneidwerkzeugen.
 
 
;Auswuchten für die Computergeneration!
 
Gut ausgewuchtet ist "halb geschliffen"!
 
Viele haben es gelesen, nach der "Zeigefinger"-geprägten Generation mutiert die Jugend zur
 
"Daumen" - Generation. Handys werden eben so bedient...
 
Was liegt da näher, dass sich moderne Ausbildungszentren, wie hier die JAKOB-PREH-SCHULE
 
Bad Neustadt an der Saale, zeitgemäßer Methoden bedienen, die Fachkräfte, Spezialisten von morgen, fit zu machen.
 
 
Am Beispiel "AUSWUCHTEN AN PRÄZISIONSWERKZEUGSCHLEIFMASCHINEN" demonstrierte die Meisterklasse 2000-2001 im Schneidwerkzeugmechaniker-Handwerk die
 
Anwendung und Nutzen moderner Auswuchtsysteme.
 
Früher galt allgemein die Ansicht, dass das Auswuchten kleiner Schleifkörper nicht
 
notwendig ist. Bestenfalls wurde extern. z.B. auf Auswuchtwaagen gewuchtet.
 
Genau an diesem Punkt setzt die Ausbildungsoffensive der JAKOB-PREH-SCHULE an.
 
 
;Wann ist welche Auswuchtmethode sinnvoll?
 
 
Grundsätzlich wurden zwei Verfahren ermittelt:
 
 
;1. An Schleifzentren mit Werkzeugwechslern empfiehlt sich das externe Auswuchten im Sinne des Voreinstellens (wie auch bei Fräszentren üblich). Die inzwischen weit verbreiteten HSK Schnittstellen (z.B. HSK50) bieten den präzisen Wechsel des gewuchteten Schleifsatzes. Das Auswuchten kann mit der kleinen, kompakten Auswuchtmaschine BMT200S direkt neben der Bearbeitungsmaschine erfolgen. Einfachste Bedienung (über Touchscreen) und beste Messgenauigkeit darf vorausgesetzt werden.
 
 
;2. An allen übrigen Maschinen kann die mobile Auswuchtelektronik BMT100M in Verbindung mit Auswuchiringen (wie im Beispiel-Versuch) erfolgreich genutzt werden.
 
;::Vorteil -> Es wird stets in der Maschine gewuchtet. Wechselfehler entstehen nicht.
 
 
Mit beiden Verfahren sind erhebliche Optimierungspotentiale wie:
 
Verbesserrung der Schleifgüte, Standzeitverlängerung der Schleifkörper, Zeitgewinn und Annehmlichkeit des Auswuchtprozesses verbunden und gesichert.
 
16 Meister Anwärter/innen testeten auf einer WALTER-Mini-Power, ausgestattet mit einem Schleifsatz für HSS-Werkzeuge das mobile MPM-Auswuchtsystem BMT100M. Es wurden 2 Schleifsätze gewuchtet und anschließend geschliffen.
 
 
[[Datei:Auswuchten Bild-19.jpg|600px]]
 
 
Auswuchten-Elektronik
 
 
Aufgabe
 
* Auswuchten beliebiger rotierender Körper
 
* Nachwuchten bei veränderter Unwucht
 
* Unwuchtüberwachung an den Maschinen
 
 
Vorteil
 
* Einfache, sichere Bedienung
 
* Keine Vorkenntnisse nötig
 
* Auswuchten direkt an der Masch.
 
* Kontrolle des Auswuchtzu±-landes
 
* Geringe Anschaffungskoslen
 
* schnelle Amortisation
 
* Kosteneinsparung durch universellen und mobilen Einsatz
 
 
Anwendung
 
* Schleiffscheiben
 
* Werkzeuge
 
* Werkstücke
 
* Sondermaschinen
 
* Ventilatoren
 
* etc.
 
 
== Abrichten ==
 
 
Trotz sorgfältiger Montage kann ebenso wie durch Verschleiß oder ungünstige Einsatzbedin-
 
gungen ein Wiederherstellen der Belaggeometrie und/oder der Schleiffähigkeit des Belages
 
erforderlich sein.
 
 
Das Erzeugen der Geometrie wird mit "Formen", das Erzeugen der Schleiffähigkeit wird mit
 
"Särfen" bezeichnet. Beides zusammen ergibt das "Abrichten".
 
Abrichten = Formen + Schärfen
 
 
Während bei Schleifscheiben mit Korund oder Siliziumkarbid das Abrichten mit einem
 
Diamantwerkzeug in nur einem Prozeß durchgeführt wird, kann es für Diamant- und
 
Bornitridschleifscheiben erforderlich sein, hierfür verschiedene Werkzeuge und Prozesse zu
 
benutzen. Teilweise gestatten diese Verfahren ein gleichzeitiges Formen und Schärfen.
 
Als weiteres wichtiges Merkmal ist die Verwendung von Diamant im Abrichtwerkzeug
 
autfgeführt. Ein wesentliches Kriterium der Abrichtverfahren ist die Verwendungsmöglichkeit
 
für geradlinige. einprofilige oder mehrprofilige Schleifbeläge.
 
 
Nicht alle Abricht- bzw. Formverfahren können im Rahmen dieser Schrift ausführlich erläutert
 
werden, doch sollen die gebräuchlichsten Verfahren für die tägliche Praxis im einzelnen
 
beschrieben und mit ihren Einsatzdaten genannt werden.
 
Zum weiteren wird dabei nach Verfahren unterteilt, die zum Formen gerader Beläge bzw.
 
solchen, die zum Erzeugen von Profilen verwendet werden, womit auch hier eine Einteilung
 
angewandt wird, die sich an der praktischen Aufgabenstellung im Betrieb orientiert.
 
 
::1.) Formen gerader Beläge
 
::2.) Diamant- und Bornitridscheiben gleichrermaßen geeignet.
 
::3.) Siliziumkarbidschleifscheibe
 
 
Das bekannteste Verfahren zum Abrichten von Diamant-und Bornitridschleifscheiben ist das
 
Abrichten mit Siliziumkarbidschleifscheiben. Hierbei ist zu unterscheiden zwischen zwei
 
Arten. Bei dem einen Verfahren wird die Siliziumkarbidschleifscheibe mit einem eigenen
 
Antrieb versehen, bei dem anderen wird die Abrichtscheibe von der Diamant- oder
 
Bornitridschleifscheibe durch Reibung mitgenommen, wobei die Abrichtscheibe durch eine
 
Fliehkraftbremse abgebremst wird.
 
 
 
[[Datei:Abrichten 123.jpg|500px|Abrichten]]
 
 
;Mit eigenem Antrieb
 
Bei der Wahl richtiger Abrichtbedingungen können geradlinige und einprofilige
 
Schleifscheiben abgerichtet werden, ohne daß ein nachträgliches Schärfen erforderlich ist.
 
Häufig werden spezielle Abrichtmaschinen verwendet. wobei die geforderte Geometrie durch
 
die Kinematik der Abrichtmaschine verwirklicht wird. Solche Spezial-Abrichtmaschinen sind
 
vor allem beim Schleifwerkzeughersteller als auch bei Großverbrauchern im Einsatz. Ein
 
wesentlicher Vorteil dieses Verfahrens liegt in der Möglichkeit, auch Diamant- und
 
Bornitridschleifscheiben mit Metallbindungen abzurichten. Optimale Anpassung an
 
verschiedene Schleifscheibenabmessungen und Spezifikationen ist durch Anpassung der
 
Relativgeschwindigkeit sowie durch oszillierendes Überschleifen im Gleichlauf möglich. Das
 
Abrichten erfolgt ohne Kühlschmiermittel, eine Staubabsaugung ist erforderlich.
 
 
[[Datei:Drehflügelabrichter.jpg|500px|Drehflügelabrichter]]
 
 
;Abrichten mit Drehflügelabrichter
 
 
::1. CBN-Scheibe auf Arbeitsgeschwindigkeit bringen.
 
::2. Mit Pressluftstrom auf Turbinenfiügel blasen. so dass Topfscheibe in bezug auf CBN-Scheibe in Drehrichtung "Mitlauf/Gleichlauf" zu drehen beginnt.
 
 
- Der Antrieb des Abrichttopfes erfolgt durch die abzurichtende Scheibe. Das entstehende Geschwindigkeits-Verhältnis qd=1:1 ergibt eine optimale Wirkrauhtiefe der CBN Scheibe.
 
 
- Alternativ kann der anfängliche Antrieb mittels Turbinengehäuse mit Luftanschluss erfolgen.
 
 
::3. CBN-Scheibe vorsichtig touchieren.
 
::4. Von CBN-Scheibe wegfahren und mit Zustellung auf 0.003 bis 0.005 mm pro Überlauf abrichten.
 
 
;Nie ohne Zustellung über CBN-Scheibe fahren!
 
 
::5. Der Vorschub vd sollte zwischen 120 bis 200mm/min liegen.
 
 
 
[[Datei:Abrichten 1.jpg|500px|Abrichten_1]]
 
 
Abrichtmöglichkeiten:
 
::Abrichtscheiben
 
::Abrichtgerät mit Fliehkrattbremse
 
::Stahlrolle
 
::Diamantabrichtscheibe
 
::Diamantabrichtrollen
 
::usw.
 
 
 
[[Datei:Abricht-Bild.jpg|700px|Abrichten Übersicht]]
 
 
 
Zusammenfassung und Ausblick
 
Wo immer möglich, sollten Diamant- und Bornitridschlefscheiben so eingesetzt werden,
 
daß nicht abgerichtet werden muß. Unter bestimmten Voraussetzungen lassen sich die
 
Schleifverfahren entsprechend gestalten. Wenn diese Voraussetzungen nicht erfüllt werden
 
können, ist ein Abrichten nach Ende der Standzeit erforderlich. Weil das Abrichten von
 
Bornitrid- und Diamantschlefscheiben weitaus schwieriger ist als das Abrichten
 
konventioneller Schleifscheiben, ist eine präzise Abstimmung des Abrichtwerkzeuges, der
 
Stellgrößen beim Abrichten und der Abrichtstrategie auf die Schleifscheibe und den Schleif-
 
prozeß erforderlich.
 
Gegebenenfalls ist hierzu ein anwendungstechnischer Berater "Schleifscheiben Hersteller"
 
anzufordern.
 
 
[[Datei:Abrichten-3.jpg|600px|Abrichten3]]
 
 
Die zunehmende Anwendung von CBN-Schleifwerkzeugen in der Serienproduktion erfordert
 
Abrichtverfahren, die den besonderen Ansprüchen der dortigen Arbeitsabläufe
 
Rechnung tragen. Besondere Bedeutung kommt dabei der Automatisierbarkeit der
 
Abrichtverfahren und ihrer Fähigkeit zu, schleiffreudige Schleifscheiben zu erzeugen.
 
 
[[Datei:Abrichten-2.jpg|600px|Abrichten2]]
 
 
 
=== Abrichtwerkzeuge ===
 
 
Die üblichsten Brechabrichtwerkzeuge sind Peristat und Brechrolle.
 
 
[[Datei:Abrichter-2.jpg|600px]]
 
 
 
Gemeinsam für Schleifscheiben, die mit diesen Werkzeugen abgerichtet werden,
 
ist, daß sie eine offene Struktur, die gute Zerspanungsfahigkeit bewirkt, erhalten.
 
Ein Peristat besteht aus einem schmalen, gutgelagerten Rädchen, in der Regel aus
 
Hartmetall. Das Abrichten erfolgt dadurch, daß das Rädchen so hart gegen die
 
Schleifscheibe gedrückt wird, daß die Bindemittelbrücken zerbrochen oder die
 
Schleifmittelkörner zersplittert werden.
 
Auch das Abrichten mit Brechrolle erfolgt dadurch, daß der Druck zwischen Rolle
 
und Schleifscheibe so groß wird, daß die Festigkeit des Bindemittels oder der
 
Schleifmittelkörner überschritten wird. Weil die Brechrolle größer ist und nicht so
 
leicht wie das Peristaträdchen rotiert, muß die Schleifscheibe während des
 
Abrichtens eine Geschwindigkeit haben, die niedriger als normal ist. Die beste
 
Geschwindigkeit ist etwa 60m/min, und die Maschine muß also hierfür konstiuiert
 
sein.
 
Eine andere aber weniger zufriedenstellende Lösung ist, daß die Brechrolle mit
 
Antrieb, der Rolle und der Schleifscheibe die geeignete Geschwindigkeit gibt,
 
versehen ist.
 
Das Material der Brechrolle ist Hartmetall oder hochlegierter, gehärterter Stahl.
 
Durch Verwenden einer profilierten Rolle kann man ein schnelles Profilabrichten
 
der Schleifscheibe erhalten.
 
Wenn man volles Profil in der Schleifscheibe gebrochen hat, soll die Brechrolle
 
während max. 2 bis 4 Umdrehungen der Schleifscheibe in Eingriff bleiben. Sonst ist
 
unnötige Abnutzung die Folge.
 
Abrichten mit Brechrolle wird nur für Schleifscheiben mit keramischem Bindemittel
 
verwendet. Die Methode fordert gute Stabilität im System Brechrolle/Schleifscheibe.
 
 
Diamantwerkzeuge
 
Bei Verwendung von Diamantwerkzeugen nutzt man die überlegene Härte des
 
Diamanten aus. Beim Abrichten von feinkörnigen, weich gebundenen
 
Schleifscheiben mit spröden Korundschleifmitteln haben Diamantwerkzeuge eine
 
sehr gute Lebensdauer. Siliziumkarbidschleifscheiben, besonders wenn sie
 
gobkörnig und hart gebunden sind, können dagegen großen Verschleiß des
 
Diamantwerkzeuges verursachen.
 
Da der Diamant hitzeempfindlich ist, ist richtige Kühlung wichtig.
 
Diese Kühlung muß während des ganzen Abrichtens und mit einem ebenen Fluß
 
erfolgen, um schnelle Temperaturschwankungen, die den Diamanten splittern
 
könnten. zu vermeiden.
 
 
Bei den Diamantwerkzeugen wird zwischen Einkornwerkzeugen.
 
Vielkornwerkzeugen, Diamantrollen und Diamantblöcken unterschieden.
 
Es gibt auch einen neu entwickelten Abrichtwerkzeugtyp. wo der Naturdiamant mit
 
einer gesinterten Diamantschicht auf einer Hartmetallplatte ersetzt worden ist.
 
Der Einkorndiamant ist das universalste Abrichtwerkzeug. Ein Nachteil sind die
 
immer höheren Preise gößerer Diamanten. Wird ein Einkorndiamant falsch
 
eingesetzt, besteht die Gefahr, daß die Spitze stumpf wird und man dadurch ein
 
schlechtes Abrichtresultat erzielt.
 
Ein Einkorndiamant soll mit etwa 15° Winkel zur Schleifscheibe montiert und dann
 
und wann gedreht werden, damit der Verschleiß gleichformig wird und der Diamant scharf verbleibt.
 
 
[[Datei:Abrichter-1.jpg|600px]]
 
 
Die meisten Werkzeuge dieses Types haben Markierungen, die zeigen, in welchen
 
Richtungen der Diamant am beständigsten ist. Der Diamant soll immer so eingestellt
 
werden, daß eine dieser Markierungen in der Drehrichtung der Schleifscheibe liegt.
 
Die Zustellung des Diamanten soll nie 0,025mm übersteigen, und die Anzahl
 
Übergänge soll darauf begrenzt werden, was für die Wiederherstellung der
 
geometrischen Form der Schleifscheibe notwendig ist. Zwei Übergänge pro
 
Abrichtung genügen oft. Wie genannt ist die Kühlung wichtig. Wenn der Diamant
 
so abgenutzt worden ist. daß eine Platte größer als etwa 1mm² ausgebildet worden
 
ist, soll er neu gefaßt werden.
 
Meißelgeschliffene Einkorndiamanten verursachen sehr hohe Abrichtwerkzeugkosten
 
und sollen nur für solche Profilabrichtungen verwendet werden, die diesen
 
Werkzeugtyp erfordern.
 
Vielkornwerkzeuge gibt es in manchen verschiedenen Modellen. Man verwendet
 
hier Diamanten kleinerer Größen, was einen niedrigeren Preis und die Gefahr
 
großer Verschleißplatten vermindert. Vielkornwerkzeuge fordern oft nicht so große
 
Kenntnisse des Schleifers und können in manchen Fällen ohne Ausjustierung der
 
Einstellung verwendet werden, bis sie ganz abgenutzt sind.
 
Gewisse Vielkornwerkzeuge arbeiten jedesmal mit nur einer Spitze. z. B. mit den
 
Diamanten hintereinander montiert. Verwendung und Abrichtresultate entsprechen
 
dann denen des Einkorndiamanten. Andere Typen arbeiten mit mehreren Spitzen
 
gleichzeitig, was natürlich bei der Wahl von Abrichtdaten usw. berücksichtigt
 
werden muß.
 
Der sog. Blattdiamant hat viele kleine Diamanten in einer oder mehreren Schichten
 
parallel zur Drehebene der Schleifscheibe orientiert. Die Anlagefläche wird nur
 
einige Zehntel Millimeter, und das Werkzeug kann deshalb in gleicher Weise wie
 
ein scharfer Einkorndiamant verwendet werden. Es kann sogar genaue Profile
 
formen.
 
Sog. Pulverdiamanten enthalten einen feinkörnigen Diamantsplitter. Die
 
Verwendung ist begrenzt.
 
Diamantrollen ermöglichen sehr kurze Abrichtzeiten. Sowohl gerade als auch
 
profilierte Schleifscheiben können abgerichtet werden. Drehrichtung und
 
Drehgeschwindigkeit der Diamantrolle beeinflussen erheblich die Abrichtstruktur.
 
Wegen der hohen Preise der Diamantrollen werden sie vorzugsweise bei
 
Serienproduktion eingesetzt.
 
 
[[Datei:Abrichter-3.jpg|600px]]
 
 
Diamantblöcke bestehen aus vielen kleinen Diamanten oder Diamantsplitter in
 
einem Metallbindemittel. Sie werden zum Abrichten von Profilen verwendet.
 
Sie sind eine billigere Alternative zu den Diamantrollen beim Schleifen von
 
kleinen Serien.
 
 
[[Datei:Abrichter-4.jpg|500px]][[Datei:Abrichtrolle.jpg|500px]]
 
 
=== Abrichten von Diamantscheiben ===
 
[[Datei:Abrichten 1234D1.jpg|500px|Abrichten mit Diamantrolle]]
 
 
Abrichten mit Diamantrolle
 
 
[[Datei:Abrichten 1234D12.jpg|500px|Crushieren von Diamantscheiben (brechen oder zermalen)]]
 
 
Crushieren von Diamantscheiben
 
 
[[Datei:Abrichten 1234D123.jpg|500px|Abrichten von Diamantscheibe mit angetriebener SiC Scheibe]]
 
 
Abrichten von Diamantscheibe mit angetriebener SiC Scheibe
 
;Abrichtparameter:
 
 
::Umfangsgeschwindigkeit der SíC-Scheibe 18-25 m/s
 
::Umfangsgeschwindigkeit der Diamantscheibe 5-15 m/s
 
::Zustellung pro Überlauf 0,005-0,01mm
 
 
== Arbeitssicherheit ==
 
 
Schleifscheiben mit keramischer Bindung sind bruchempfindlich. Kommt es durch
 
Haarrisse, unsachgemäße Aufspannung oder große Fliehkräfte zum Zerspringen der
 
Schleifscheibe, werden Bruchstücke mit der Scheibenumfangsgeschwindigkeit von
 
80km/h bis 400km/h weggeschleudert - eine tödliche Gefahr, wenn ohne
 
Schutzvorrichtungen gearbeitet wird.
 
Beim Aufspannen von Schleifscheiben und beim Schleifen sind die
 
Unfallverhütungsvorschriften zu beachten:
 
* Eine Klangprobe ist unmittelbar vor dem Aufspannen einer neuen oder
 
gebrauchten Scheibe durchzuführen. Dazu wird die Scheibe rechts oder links von
 
der Mittellinie leicht angeschlagen. Rissfreie Scheiben ergeben einen klaren
 
Klang.
 
 
Beim Aufspannen ist zu beachten:
 
 
::* Die Schleifscheiben müssen sich leicht auf die Spindel schieben lassen.
 
::* Der Mindestdurchmesser der Flansche beträgt bei geraden Schleifscheiben 1/3xD (Bild 1 ).
 
::* Es dürfen nur gleich große und an der Anlageseite gleich geformte Flansche mit weichen Zwischenlagen verwendet werden, um jede Biegebeanspruchung zu vermeiden.
 
::* Die Unwucht ist zu prüfen und die Schleifscheibe wenn notig auszuwuchten
 
::* Jeder neu aufgespannte Schleifkorper muss mindestens 5 Minuten bei der hochstzulässigen Drehzahl in einem abgegrenzten Gefahrbereich probelaufen.
 
::* Die Werkstückauflage oder die Schutzhaube dürfen nur bei stillstehender Schleifinaschine nachgestellt werden (Bild 2 )
 
::* Beim Schleifen muss eine Schutzbrille getragen werden.
 
 
Beim Schleifen sind die UVV zu beachten!
 
 
=== Klangprobe und Aufspannen ===
 
 
Aufspannen von Schleifscheiben
 
 
Bevor eine keramisch gebundene Scheibe aufgespannt wird, sollte die
 
Klangprobe vorgenommen werden.
 
 
[[Datei:Klangprobe neu.jpg|600px]]
 
 
Dazu wird die Scheibe mit einem nicht-
 
metallischen Hammer rechts und links von der senkrechten Mittellinie leicht
 
angeschlagen. Das leichte Anschlagen sollte einen hellen "Glockenklang"
 
verursachen. Bei einem dumpfen Klang die Scheibe nicht einsetzen.
 
 
[[Datei:Flansch1.jpg|500px]][[Datei:Flansch.jpg|500px]]
 
 
Zwischen den Stahlflansch und die Scheibe gehören Kunststoffflansche
 
(Polypropylen, 0.5mm dick).
 
 
== UVV ==
 
  
 
== Hartmetalle ==
 
== Hartmetalle ==
Zeile 660: Zeile 136:
  
 
[[Datei:Profilfraeser.jpg|300px]]
 
[[Datei:Profilfraeser.jpg|300px]]
 
== CBN und Diamant-Schleifscheiben ==
 
 
===1. Diamant und CBN-Schleifscheibenform===
 
Die Standardisierung: die hier vorgeschlagen wird: ist nicht endgültig und wird sicher von Zeit zu Zeit
 
durch die Herausgabe von Ergänzungen vervollkommnen werden. Der Inhalt dieser Broschüre kann jedoch
 
als eine Grundlage angesehen werden: die von allen interessierten Lä`ndern übernommen werden kann -
 
tatsächlich wird dieser Standard von den europäischen Delegierten in den l.S.O.-Verhandlun-gen schon
 
benutzt und kann daher als ein Beitrag zu einer internationalen Vereinbarung über Standardisierung
 
betrachtet werden.
 
===2. Diamant- und CBN-Konzentration===
 
Als Basis für die Diamant- und CBX-Konzentration in Schleifscheiben gilt
 
Konzentration 1l]l] entspricht einem Diamantinhalt von 4,4 Karat pro
 
Kubikzentimeter Belagvolumen (0,88 Gramm pro Kubikzentimeter).
 
Dieser Wert ist gleichbedeutend mit 25 Volumenprozent Diamant bei  theoretischen spezifischen
 
Gewicht des Diamanten von 3:52 Gramm per Kubikzentimeter.
 
Alle anderen Konzentrationen sind proportional: z. B. 125: ]"5:5Ü.
 
===3. FEPA - Schlüssel===
 
ZUR BESTIMMUNG DER FORM UND BENENNUNG VON DIAMANT- UND CBN-SCHLEIFSCHEIBEN
 
 
Dieser Schlüssel entspricht der letzten Veröffentlichung des "USA STANDARD Identificationcode" für
 
Formen von Diamant-Schleifscheiben (USASB 74.l -1966 überarbeitete Fassung des B74.l-1951).
 
;Im folgenden ist nur von Diamant-Schleifscheiben die Rede, aber in allen Fällen, in denen Diamant-Schleifscheiben erwähnt werden, kann dieser Begriff gegen CBN-Schleifscheiben ausgetauscht werden.
 
 
===4.1 Bereich===
 
:4.1.1 Dieses System wurde entwickelt, um die Form von kompletten Schleifscheiben, oder mehrteilig, zu bestimmen, wobei Schleifwerkzeuge, montiert auf Schäfte oder Halter, und lose Schleifsegrnente ausgenommen wurden.
 
:4.1.1.1 Das System setzt sich aus vier Begriffen zusammen (siehe Abb. 1):
 
::(1) Form des Grundkörpers ö.UC
 
::(2) Form des Diamantbelages
 
::(3) Anordnung des Diamantbelages
 
::(4) Abweichungen
 
:4.1.1.2 Diese Begriffe werden bei der Bestimmung wie folgt angewendet:
 
::Pos. 1 - Eine Zahl bezeichnet die Form des Grundkörpers (siehe 4.2.1 und Abb. 2)
 
::Pos. 2 - Ein oder zwei Buchstaben bezeichnen die Form des Diamantbelages auf dem Grundkörper (siehe 4.2.2 und Abb. 3)
 
::Pos. 3 - Eine Zahl bezeichnet die Anordnung des Diamantbelages auf d. Grundkörper (s. 4.3.1 u. Abb.4)
 
::Pos. 4 - Ein Buchstabe bez. die Abweichungen (s. 4.4.1 und Abb. 5)
 
:4.1.2 Die folgenden Aufstellungen zeigen die Teile des Systems und die Schleifscheibenformen.
 
 
===4.2. Auslegung===
 
:4.2.1 Prinzipielle Grundkörperformen (siehe Abb. 2)====
 
:4.2.1.1 Die erste Stelle in dem System zur Festlegung der Standardtypen von Diamant-Schleifscheiben bezeichnet die Form des Grundkörpers: auf den der Diamantbelag aufgebracht ist.
 
:4.2.1.2 Die Bezeichnung wird nicht beeinfiußt durch die Anordnung des Diamantbelages oder den Verwendungszweck der Schleifscheibe.
 
:4.2.1.3 Das Anbringen einer Aussparung im Grundkörper für die Anordnung des Schleifbelages beeinfiußt die Bezeichnung der Form des Grundkörpers nicht.
 
:4.2.1.4 Eine Freidrehung oder eine Fase soll bei der Bezeichnung des Grundkörpers nicht berücksichtigt werden.
 
:4.2.1.5 Die Bezeichnung erfolgt durch Zahlen und soll den allgemeinen Richtlinien für die Bestimmung der Form anderer Schleifscheiben entsprechen.
 
Abb. 2 Bild
 
:4.2.2 Diamantbelag (siehe Abb. 3)
 
:4.2.2.1 Die zweite Stelle in dem System zur Festlegung der Standardtypen von Diamantscheibenbezeichnet die Querschnittsform des Diamantbelages.
 
:4.2.2.2 Die Anordnung des Diamantbelages auf dem Grundkörperbeeinfußt die Bezeichnung der Querschnittsform nicht.
 
:4.2.2.3 Der Diamantbelag kann sich um jede Achse drehen und soll aus vier Flächen bestehen, äußere Fläche, innere Fläche und zwei Seitenflächen.
 
:4.2.2.4 Die Bezeichnung erfolgt durch Buchstaben und soll den allgemeinen Richtlinien für die Bezeichnung von Scheibenarbeitsfiächen bei anderen Schleifscheiben entsprechen. Bezeichnungsbeispiel für eine Diamant -bzw. CBN-Schleifscheibe
 
Abb. 3 Bild
 
 
===4.3. Anordnung des Diamantbelags===
 
(siehe Abb. 4)
 
:4.3.1 Die dritte Stelle in dem System zur Festlegung der Standardtypen von Diamantscheiben bezeichnet die Anordnung des Diamantbelages auf dem Grundkörper. Allgemein ist bei der Anordnung des Diamantbelages auf dem Grundkörper zu beachten: daß der äußere Punkt eines winkligen oder konvexen Querschnitts (Belages) mit dem Außendurchmesser übereinstimmt.
 
:4.3.2 Die Bezeichnung erfolgt durch Zahlen.
 
 
===4.4. Abweichung===
 
(siehe Abb. 5)
 
:4.4.1 Die vierte Stelle in dem System zur Festlegung der Standardtypen von Diamantscheiben bezeichnet die Abweichungen. Die Bezeichnung erfolgt durch Buchstaben.
 
:4.4.1.1 Diese vierte Stelle wird nur im Bedarfsfalle hinzugefügt.
 
:4.4.1.2 Abweichungen von Standardscheibenformen sind innerhalb der festgelegten Begriffsbestimmungen zulässig.
 
 
===Anordnung und Bezeichnung===
 
Zahl und Position
 
::1 - Umfang: Der Diamantbelag befindet sich am Umfang des Grundkörpers und erstreckt sich über die Gesamthöhe der Diamantscheibe. Die axiale Länge dieses Belages kann größer, gleich oder kleiner sein als die Belagtiefe, die in radialer Richtung gemessen wird. Eine oder mehrere Naben werden bei dieser Beschreibung nicht zur Gesamthöhe der Diamantscheibe gerechnet.
 
::2 - eine Seite: Der Diamantbelag befindet sich auf der Planseite des Grundkörpers. Die radiale Breite des Diamantbelages erstreckt sich vom Umfang zum Mittelpunkt der Diamantscheibe hin. Sie kann über die ganze Planfiäche der Diamantscheibe gehen und soll größer sein als die axial gemessene Belagtiefe. Abbildung 4 Anordnung und Bezeichnung Zahl und Position Beschreibung
 
::3 - beide Seiten: Der Diamantbelag befindet sich auf beiden Planflächen des Grundkörpers. Die radiale Breite des Diamantbelages erstreckt sich vom Umfang zum Mittelpunkt der Diamantscheibe hin. Sie kann über die ganzen Planflächen der Diamantscheibe gehen und soll größer sein als die axial gemessene Belagtiefe.
 
::4 - nach innen abfallend oder konkav: Diese Auslegung erfordert die Grundkörper 2, 6, ll, 12 und 15. Der Diamantbelag befindet sich auf einer Seitenfiäche. Diese Fläche hat einen Winkel oder eine Krümmung von  höheren Punkt am Scheibenumfang zu  niedrigeren Punkt in Richtung auf den Mittelpunkt der Scheibe hin.
 
::5 - nach außen abfallend oder konvex: Diese Auslegung erfordert die Grundkörper 2, 6, ll und 15. Der Diamantbelag befindet sich auf einer Seitenfläche. Diese Fläche hat einen Winkel oder eine Krümmung von niedrigeren Punkt am Scheibenumfang zu höheren Punkt in Richtung auf den Mittelpunkt der Scheibe hin.
 
::6 - Teil des Umfanges: Der Diamantbelag befindet sich am Umfang des Grundkörpers, erreicht aber nicht die Gesamthöhe der Diamantscheibe und auch nicht eine der beiden Planflächen des Grundkörpers.
 
::7 - Teil der Seite: Der Diamantbelag befindet sich auf einer Planfläche des Grundkörpers: erreicht aber nicht dessen Umfang. Der Diamantbelag kann sich bis zum Mittelpunkt der Scheibe erstrecken.
 
::8 - voll durchsetzt: Es ist kein Grundkörper vorhanden, Diamantscheibe ist gleich Diamantbelag.
 
::9 - besonderer Teil des Umfanges: Der Diamantbelag befindet sich am Umfang des Grundkörpers, erreicht aber nur eine seiner Planflächen.
 
::10 -innerer Ring: Der Diamantbelag befindet sich auf der inneren Umfangsfläche des Grundkörpers und erstreckt sich über die Gesamthöhe der Diamantscheibe.
 
 
Abb. 4 Bild
 
Abbildung 4 Anordnung und Bezeichnung
 
Zahl und Position Beschreibung
 
::B - Bohren und Senken: Befestigungslöcher mit planen Ansenkungen im Grundkörper
 
::C - Bohren und Verenken: Befestigungslöcher mit konischen Ansenkungen im Grundkörper.
 
::H - Bohren: Durchgehende Befestigungslöcher.
 
::K - Keilnut: Bild
 
Teilsauszug aus "FEPA - Standard für Diamant- und CBN-Schleifscheiben (1992) Fa. Winter"
 
 
 
 
 
  
  
Zeile 782: Zeile 169:
  
  
== Scheibenformen ==
 
[[Datei:Form 1.jpg|600px]]
 
 
[[Datei:Form-2.jpg|600px]]
 
 
[[Datei:Form-4.jpg|600px]]
 
 
[[Datei:Grundform.jpg|600px]]
 
 
[[Datei:Grundformen.jpg|600px]]
 
 
Schleifscheibengeschwindigkeit
 
 
Alle Scheiben, die schneller als 35m/s laufen, müssen mit entsprechenden Farbstreifen gekennzeichnet werden.
 
 
[[Datei:Farbstreifen.jpg|600px]]
 
 
::50m/s - Blau ---- 63m/s - Gelb ---- 80m/s - Rot ---- 100m/s - Grün ---- 125m/s Grün-Blau
 
 
 
== Schleiffehler ==
 
 
Schleiffehler können von einer Vielzahl von Faktoren verursacht werden. Nachstehend eine
 
Auflistung der häufigsten Fehler beim Schleifprozeß:
 
 
;Allgemeine Fehler
 
 
*Nicht die passende Spezifikation der Schleifscheibe für den zu schleifenden Werkstoff
 
*Nicht die angepaßte und optimale Spezifikation der Schleifscheibe für das Schleifverfahren z.B. Pendel, Tiefschliff, Einstich, Durchlauf etc.
 
*Maschinensystem im Hinblick auf Führungen, Antriebe und Steuerungen nicht berücksichtigt
 
*Unwucht der Scheibe in vertikaler wie horizontaler Richtung
 
*Loser Sitz der Scheibe auf der Flanschauthahme
 
*Beschädigung der Flanschaufnahmebohrung oder -anlageflächen
 
*Tiefenzustellung-Werkstückgeschwindigkeit-Drehzahl der Schleifscheibe stehen nicht im richtigen Verhältnis zueinander
 
 
;Fehler beim Konditionieren der Schleifscheibe
 
 
*Die Abrichtparameter, z.B. Abrichtzustellung, -geschwindigkeit, -quotient, Verschleißkompensation müssen dem jeweiligen Verfahren angepaßt sein
 
*Abrichtwerkzeug lose oder labil
 
*Beschädigter Abrichtdiamant
 
*Verschleiß der Formabrichtwerkzeuge
 
 
;Fehler beim Kühlen
 
 
*Mediumdurchsatz (Menge, Druck) ist unzureichend
 
*Mediumstrahl gelangt nicht direkt in die Schleifikontaktzone
 
*Keine Mediumleitstücke, obwohl räumlich möglich.
 
*Düsenaustrittsöffnungen lassen keine laminare Strahlbildung zu
 
*Zu hohe Verschmutzung des Kühlmediums
 
*Unzureichende Konzentration des Kühlmediums
 
*Nicht richtige Auswahl des Kühlmediums z.B. Emulsion statt Öl.
 
 
;Fehler Vermeidung - Behebung
 
 
* Mit uns sprechen und das "elbe Know-how" nutzen
 
  
  
[[Datei:Schleiffehler2.jpg|600px]]
 
  
  
  
 
== Werkstoffprüfung ==
 
== Werkstoffprüfung ==

Version vom 2. April 2017, 21:44 Uhr

Sachgebiete:





Hartmetalle

Hartmetallsorten - Feinkorn

Optimales Zähigkeitsverhalten durch außerordentliche Biegebruchfestigkeit bis 3.700 N/mm² Höhere Druckfestigkeit durch feinste Korngröße und Homogenität des Hartmetallgefüges Beste Verschleißfestigkeit - Härte bis 1.720 HV3O

  • Hohe Sicherheit beim Einsatz des Werkzeuges durch geringe Bruchanfälligkeit
  • Bearbeitung schwer zerspanbarer Materialien bis hin zu den warmfesten Legierungen
  • Verwendung von Hartmetall auch im Anwendungsbereich niedriger Schnittgeschwindigkeiten
  • Höhere Kantenbeständigkeit und damit weniger Schneidkantenausbrüche
  • Größere Sicherheit gegen Bruch auch bei Werkzeugen mit kleinsten Durchmessern
  • Verbesserung der Schneidkantengüte und Schneidkantenstabilität
  • „Scharfe“ Schneiden eröffnen den Einsatz in der Decolletagebearbeitung bzw. der Kunststoff- und NE-Zerspanung und in der Zerspanung von Nimonic, Stellit, Titan, Tantal, Molybdän etc.
  • Längere Lebensdauer des Werkzeuges durch geringeren Verschleiß
  • Bearbeitungsmöglichkeiten hochharter und abrasiver Materialien (z.B. gehärteter Stahl)

Beste Verschleißfestigkeit - Härte bis 1.720 HV3O


Hartmetalle sind Sinter-Verbund-Werkzeugwerkstoffe, die zu etwa 90% aus metallischen Hartstoffen und etwa 10% Cobalt-Bindemittel bestehen und daher äußerst hart sind. Die hier in Betracht kommenden Hartstoffe sind WC, TiC, TaC und NbC. Der für Hartmetalle Wichtigste Hartstoff WC zerfällt beim Schmelzen, so dass Hartmetallkörper durch das SINTERN pulvermetallurgischen Verfahren hergestellt werden müssen. Dabei werden durch die Verfahrensschritte Mahlen und Pulververdichten zunächst Presslinge hergestellt, deren Formen in Bild 1 wiedergegeben sind. Beim Sintern wird das Cobaitbindemittel flüssig, benetzt die Hartstoffe und bildet mit ihnen chemische Verbindungen.

Siehe Sintern.

Kühlkanäle

Vorteile von Kühlkanälen:

  • Direkte Kühlung an der Schneide bei gedrallten Bohr- und Fräswerkzeugen, dadurch wesentlich geringerer Verschleiß der Mantelflächen und Schneidkanten
  • Bessere Maßhaltigkeit und bessere Oberflächengüte am Werkstück
  • Gleichbleibende Position der Kühlbohnrng beim Nachschleifen des Werkzeuges
  • Ausspülen der Späne aus der Bohnrung und Kühlung des Werkzeuges und Werkstückes

Sintern

Einer der wichtigsten Prozesse bei der Herstellung von Hartmetallen ist das Sintern. Durch das durch pulver-metallurgische Verfahren entstehen durch Hitze und hohen Druck Formteile aus Sinterwerkstoffen. Die Einzelschritte dieses Verfahrens sind in der Regel:

Pulverherstellung -> Pressen eines Rohlings aus Pulver -> Sintern

Pulver ist ein Haufwerk von Teilchen mit kleinerem Durchmesser als 1mm. Es wird durch Zerstäubungs- oder Verdüsungsverfahren, mechanische Zerkleinerung, Reduktionsverfahren oder elektrolytische Pulverabscheidung hergestellt. Dickere Teilchen als >1 mm werden Granulate, kleinere Kolloide genannt. Pressen nennt man die Formgebung der Sinterkörper und Verdichtung des Pulvers durch Einpressen in Matrizen mit Pressdrücken von 200 N/mm2 bis 600 N/mm2. Infolge Kaltverfestigung des Pulvers durch Versetzungsstau und Reibung zwischen Pulver und Matrize kann Pulver nicht zu völliger Dichte gepresst Werden. Die Arbeitsweise wird als koaxiales Pressen bezeichnet. Die Herstellung von kompliziert geformten Presskörpern erfolgt durch isostatisches Pressen, d. h. durch allseitigen Pressdruck. Dabei werden die gummielastischen Matrizen in einen Druckbehälter eingeschlossen und von einer Druckflüssigkeit beaufschlagt. Sintern nennt man das Glühen von Presskörpern bei Temperaturen, die dem 0,5- bis 0,95 fachen der Schmelzternperaturen der Ausgangswerkstoffe entsprechen. In der Regel verbinden sich dabei die Pulverteilchen durch einen der folgenden Vorgänge zu einem festen Gefügeverband, dem Sinterwerkstoff: Bei einheitlichen Pulvern Wachsen die Pulverteilchen an den Berührungsstellen durch Rekristallisation = Kornwachstum zusammen. Nichteinheitliche Pulver enthalten Bindemittel. Diese werden flüssig und benetzen die Pulverteilchen, sie stellen den Zement dar, der die Pulverteilchen verbindet. In manchen Fällen folgen den bisher beschriebenen Arbeitsgängen noch das Kalibrieren auf höhere Maßgenauigkeit, Durchmesser bis IT7, Längen bis IT12, Verbesserung der Oberflächen und/oder Tränken des Porenraumes mit Schmierstoffen oder niedrigschmelzenden Metallen (z. B. Kupfer-Infiltration). Sinterkörper haben nach allen Richtungen hin gleiche Eigenschaften.

Pulvermetallspritzguß

Ein neues Verfahren in der Sintertechnik ist der Pulvermetallspritzguß. Das zu verarbeitende Metallpulver wird mit einem thermoplastischen Kunststoff vermischt. Der Thermoplastanteil liegt zwischen 10 bis 35 %. Diese Mischung kann auf herkömmlichen, an den hohen Metallpulveranteil angepaßten Kunststoffspritzgießmaschinen verarbeitet werden Anschließend wird der Kunststoffanteil thermisch zersetzt und ausgetrieben sowie das Bauteil dichtgesintert. Dieses Verfahren verbindet die bekannten Vorteile des Kunststoffspritzgießens wie nahezu beliebige Formgestaltung, Hinterschneidungen, große Serien, kostengünstige Fertigung mit Vorteilen der Pulvermetallurgie, z. B. beliebige Werkstoffkombinationen, besondere Werkstoffqualitäten und isotrope Werkstoffeigenschaften. Erfolgreich eingesetzt wurde das Verfahren für Bauteile aus Hartmetall, Eisenwerkstoffen und Nickelsuperlegierungen.

Holzwerkzeuge

Dübellochbohrer

Beschlagbohrer:

Beschlagbohrer.jpg

Fräser

Fräser  in Aufnahme (mit PKD-Schneiden)

Fraeser-pkd.jpg

Senker

HSS-Senker

Senker.jpg

Sägen

Säge

Saege.jpg

Profilfräser

Profilfräser

Profilfraeser.jpg


Messerschmiede

Abziehsteine

Besteckteile

Messer

Jagdmesser

Oktulier-Kopulier-Messer

Rasiermesser

Taschenmesser

Damaszener

Beschalungswerkstoffe

Koch- und Metzgermesser

Kuttermesser

Scheren

Poliermittel

Schneidsatz

Bandschleifen

Messerschneiden

Werkstoffprüfung